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Abstract 

The development of complex systems such as industrial process plants is accompanied by a continuous improvement of industrial safety. 
This remains an important element such as production, in a world where accidents continue to cause a high number of fatalities and severe 
economic and material losses. In addition, these losses cannot avoid significant damages to the environment that have a negative effect on 
the present and future of society. A better way to deal with these complex systems is to use risk management, which is a necessary priority 
for our society and our companies today. It is essential to develop or integrate quantitative approaches in risk assessments to evaluate the 
safety of complex processes. The present work proposes a comprehensive risk assessment approach based on a bow tie diagram mapped to 
a Bayesian network, with the combination of a risk matrix. In this way, we firstly define the worst-case scenario by hazard analysis and then 
use a bow tie diagram to understand the flow of cause/effect relation between system components. This allows us to model the accidental 
scenario and then construct a Bayesian network. Secondly, a transformation operator is used to calculate the occurrence frequency of 
unwanted failures, which leads to the activation of various layers of protection within the system. Finally, a risk matrix is used to evaluate 
the residual risk with the help of a probability-severity ranking criterion. This proposed methodology has been applied to a gas treatment 
plant system based on risk management. 
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1. Introduction 
 
Oil and gas industries are complex and involve the latest technological innovation. This technological development is 
accompanied by a continuous improvement of safety, which remains one of the main concerns in this field. Nowadays, the 
necessity of safety measures should be emphasized due to the possibility of catastrophic accidents that result from chemical 
materials at different process and storages conditions, such as high/low pressure and temperature. Accidents continue to cause 
significant damage and a high number of casualties [1-4]. For the purpose of managing the safety process, a risk management 
goal was defined as continuously analyzing and assessing potential dangerous events and proposing more up-to-date ways to 
control risks, while reducing every possible unwanted effect on the population, materials, or environment [5]. Risk 
management is integrated into three main axes: risk analysis, risk evaluation, and risk reduction/control. For this purpose, it is 
essential to develop quantitative or semi-quantitative approaches to evaluate the safety integrity level. Recently, many 
quantitative and qualitative approaches have been proposed and created for safety assessment. Many methods are presented as 
a review for chemical process safety [6], including qualitative analysis such as hazard and operability analysis (HAZOP), 
failure mode and effects analysis (FMEA), and what-if analysis. Moreover, quantitative analysis methods include fault tree 
analysis (FTA) and event tree analysis (ETA), and semi-quantitative analysis methods include a layer of protection analysis 
(LOPA). Each method has its advantages and disadvantages. For a better picture of systems safety, it is best to combine the 
two approaches; in our field, we refer to this as quantitative risk assessment (QRA) [5]. 
 

QRA is one of the most used and efficient methods for risk assessment that make it possible to predict accident scenarios 
in complex systems [7]. Among the efficient tools used in QRA are bow tie (BT) diagrams, which have also shown flexibility 
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and effectiveness for enhancing personnel knowledge to better understand the risks and take appropriate action to prevent 
accidents [8,9]. These diagrams are used treat cause-consequence events between components in a complex system [10]. BT 
analysis can be implemented to analyze any type of risk, regardless of whether it is an environmental, safety, or commercial 
risk. Today, it is used worldwide in different industrial sectors to improve safety overall [11-13]. BT is mapped to a Bayesian 
network (BN) or Bayesian belief networks (BBNs), while taking into account the advantages of probability updating and 
uncertainty in risk assessment. It is a powerful tool to manage and integrate the objective or subjective probability data in risk 
assessment and reliability analysis [14,15]. BN has become more popular in reliability, availability, safety, and risk 
assessment for complex systems [16-22] . A review is presented in [23] that studied a recent brief statistical of BN 
applicability in the chemical and process industry. BN is applied as a dynamic safety analysis for complex process. For 
example, Zarei et al. [24] applied dynamic risk assessment of natural gas stations using BN. The same authors assessed the 
dynamic risk analysis of a storage tank by BN, and they modeled consequence impacts on the environment by PHAST 
software [25]. Another application is to assess domino effects by dynamic Bayesian networks in chemical infrastructures [26]. 
BN is a proper tool for handling uncertainty in risk assessments by using fuzzy logic or evidence theory [27-30]. 
 

 This paper presents a case study in industrial gas plants specifically in a gas separator system. HAZOP is used for risk 
analysis and defining the causes, the worst-case scenarios, and the preventive or protective barriers implemented in the system. 
After that, the BT diagram is used to model the cause-effect that leads to unwanted events, while BN is used to consider 
conditional dependencies and probability updating. Lastly, the results from the BN analysis are compared with the acceptance 
criteria to assess the residual risks, and some measures will be recommended to improve the safety level in the industrial plant 
system. 

 
2. Materials and Methods 

 
2.1. The Proposed Methodology   

    
The methodology of the proposed work is shown in Figure 1. It consists of a risk analysis, risk assessment, and risk evaluation. 
In the risk analysis, a HAZOP technique is applied to identify risks and possible unwanted events. In the risk assessment, a BT 
diagram is constructed by identifying cause-consequence relationships. After that, a mapping algorithm is used to convert the 
BT diagram to BN by assessing the occurrence probability or failure frequency of the top event (causes) and assessing all 
possible consequences. In the risk evaluation, the risk matrix is introduced to define the risk tolerability (unacceptable, 
tolerable, or acceptable). In the end, a sensitivity analysis with a recommendation is presented to improve the process safety 
level.    
 

 
Figure 1. The diagram of the proposed approach
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2.2. Bayesian Networks (BN) 
 

A Bayesian belief network or a Bayesian network (BN) is a graphical model; it can be used as an alternative to FTA and ETA 
to illustrate the relationships between a system failure or an accident and its contributing factors (causes), as well as one or 
more results (consequences) in an industrial system [5]. BN analysis is more general than an FTA and ETA since the causes 
and consequences do not have to be binary events and may be qualitative or quantitative, and the combination between both 
ways depends on what is analyzed. 

 
The network consists of nodes and directed arcs. Each node describes a component, state or condition, and each arc 

represents a direct influence between nodes. 
 
A BN indicates the joint probability distribution ( )P X of variables 1 2,  X  nU X X , included in the network as [31]: 

1
( ) ( / ( )) 

n
i i

i
P U P X Pa X                                                (1) 

where ( )Pa Xi  is the parent set of a variable Xi ; according to this, the probability of Xi  is calculated as: 
 

( )( )  
Xi

P UP Xi                                                     (2) 

A BN takes advantage of Bayes theorem to update the prior probability of events given new observations, called evidence 
, thus rendering the updated or posterior probabilities: 

 
( , ) ( , )

( ) ( , )
( / )  

U

P U E P U E
P E P U E

P U E                                             (3) 

Here, an algorithm proposed by Khakzad et al. that maps a BT diagram to a BN is used [32]. It is necessary to note that 
one must calculate the occurrence frequency of the top event in FTA [33,34] (initiating event in a BT and BN) and not its 
probability of failure, as seen in numerous publications [19,23-25,27,32]. In addition, the use of asymptotic values instead of 
instantaneous ones, as is often the case, could help get closer results to the reality at the end of the system life cycle. To 
compute the frequency of initiating events in a BN, an efficient transformation operator based on a matrix approach proposed 
by [35] and generalized by [36] is used here. 

 
The unavailability of each parent node can be calculated using the exponential distribution: 

 
( )( ) tU t e                                            (4) 

( )U                                                      (5) 

 
2.3. Risk Matrix 
 
The risk matrix used in this study is 4 × 4 dimensions, as shown in Figure 2. The failure frequency and the consequence of 
gravity can be categorized into four levels, as shown in Tables 1 and 2. The risks are organized into three categories: 
unacceptable, tolerable ALARP, and acceptable. They indicate a consecutively unacceptable level and the need for a global 
risk analysis followed by a maintenance inspection with corrections; this must be done as soon as possible. The tolerable level 
indicates that the system can function normally but with a significant increase in maintenance and control. The acceptable 
level shows that no special measure needs to be placed.  
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Figure 2. 4 × 4 risk matrix 
 

Table 1. A ranking criterion of failure frequency 
Level Description Frequency 

P4 Very probable occurred frequently  > 1 / year 
P3 Probable occurred frequently (or could occur), could occur during the lifetime of the 

installation 
10-2 to 10-1 / year 

P2 A few probable already (or could be) encountered in a similar organization  10-4 to 10-2 / year 
P1 Unlikely never met or heard but physically possible (or extremely rare) < 10-4 / year 

 
Table 2. A ranking criterion of consequence gravity 

 
2.4. Sensitivity Analysis 

 
The most efficient characteristics of the BN are focused on event likelihood updating (posterior) of each event given the 
occurrence of the initiating event. They show the accident features better than prior probabilities and thus are less uncertain. 
The ratio of variation (RoV) in Equation (6) can involve a dependable proportion of significance in any system failure and 
sensitivity analysis [24].  

( ) ( )
( )

( )

Xi Xi
RoV Xi

Xi
                                              (6) 

Where ( )Xi  and ( )Xi  denote, respectively, the posterior and prior probabilities of Xi .  
 

3. Case Study 
 

Figure 3 presents a debutanizer section in a gas refinery MPP4 gas plant (Hassi R’mel) in Algeria. The system has been 
designed to separate between LPG and condensate under high temperature and low pressure. The overhead C102 product is 
fully condensed in the E108 condenser. The overhead product is collected in the reflux accumulator D108 as a liquid LPG 
with a temperature of 35°C and pressure of 14.5 Bar. Part of this liquid is conveyed by pumps P105A/B to the upper plate as 
reflux of the column C102, and the other is transferred to T002 (storage sphere). A pressure indicator controller (PIC) controls 
the pressure in the D108. This sends an alarm signal to the control room when the pressure exceeds a certain limit. 
Furthermore, a relief valve opens to the flare in case of an emergency. 

 

Gravity Personal Environment Public Production/goods 

G4 Several deaths Long-term population out of bounds Deaths Important damage 
& total shut down 

G3 Permed inability
or one death 

Uncontrolled internal population or 
pollution out of bounds 
 

Significant 
injuries 

Localized damage 
and partial stop of 
the unit 

G2 Significant injuries  Controlled internal population   
 

Minor injuries Minor damage and 
short stoppage of 
production 

G1 Minor injuries Minor No impact No damage no 
stoppage of 
production 
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Figure 3. Debutanizer section 

 
A HAZOP study was conducted to identify the most hazardous scenarios. The results revealed many potential scenarios. 

Table 3 shows catastrophic potentials scenarios that could lead to many different damages to the system environment. Two 
scenarios are selected to be studied as the highest risk scenario: 

 First scenario: Explosion and process shutdown caused by the failure of the flow regulation system FIC (143). 
 Second scenario: Pumps cavitation with partial process shutdown caused by the failure of a pressure regulation 

system PICB (130).   
 

In order to avoid these scenarios, many prevention barriers are installed: 
 Alarm and human operator: PAH130, LAL128, and LZAL129. 
 Pressure regulation system PIC130A. 
 Pressure safety valve PSV110. 
 Safety instrumented system (SIS) LZL129: Emergency shutdown of the pumps P105A/B. 

 
Table 3. HAZOP for system study 

N° Guide 
word 

Element Deviation Causes Consequences Protective barriers 

1 High Pressure High 
pressure 

- Failure of the flow 
regulation system 
FIC (FIC143V valve 
stuck close).  

- The pressure increase in D108. 
- Rupture the reflux 
accumulator D108, fire, 
explosion, flash fire, pool fire, 
vapor cloud explosion (VCE).   

- High-pressure alarm 
PAH130. 
-Human operator. 
- Pressure regulation 
system PIC130A. 
-Pressure safety valve 
PSV110.   

2 Low Level Low level - Failure of the 
pressure regulation 
system PICB 
(LIC128VA/B 
valves stuck open).  

-The level of GPL decrease in 
D108. 
- Pumps cavitation with the risk 
of pump breakage.  
- Pool fire.    

- Low-level alarm 
LAL128 (60%). 
- Low-level alarm 
LZAL129 (15%). 
- SIS (LZL129) ESD of 
the pumps P105A/B. 
- Human operator. 

 
3.1. Bayesian Network Model 
 
A BT model was constructed for accident scenarios related to a case study (Figures 4 and 5). This model has provided a robust 
tool in QRA and has helped in the determination of relationships between initial events and the final event while showing 
every possible consequence. However, BT is mapped into a BN to overstep the limitations of BT by using an algorithm 
developed by Khakzad et al [32]. 
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Figure 4. BT model of the first scenario 

 

 
Figure 5. BT model of the second scenario 

 
In the present work, the BN was simulated using GeNIe 2.2 software. First, the initiating events (causes) should be 

identified with their probabilities and frequencies of failure in the BN model. Then, the various prevention layers, initiating 
events, and possible consequences should be modeled. Finally, the residual risk for every scenario with the risk matrix posed 
by the company should be checked. If the residual hazards level surpasses the acceptable zone, extra proportions of safety 
must be suggested to improve the safety of the process plant. 

 
In this case, Figures 6 and 7 present a BN model for the first scenario (high pressure) and the second scenario (low level) 

successively. In order to run the quantification part, Table 4 presents equipment symbols with their failure, repair rates or 
failure probability. All data are obtained from the database of OREDA [37]. 
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Figure 6. BN model of the first scenario 

 

 
Figure 7. BN model of the second scenario 
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Table 4. Failure and repair rates 

Symbols Component Failure rate (/h) Repair rate (/h) Failure probability 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 

X10 
X11 
X12 
X13 
X14 
X15 
X16 
X17 
X18 
X19 

FT143 
FIC143 
FIC143V 
PT130 
PIC130B 
LIC128AV 
LIC128BV 
Alarm (PAH-130) 
Alarm (LAL-128) 
Operator 
PIC130AV 
PIC130A 
LTL128 
LIC128 
LTLL129 
PLC129 
P105A 
P105B 
PSV110 

1.26E-6 
8.8E-6 
3.2E-5 
1.2E-6 
8.8E-6 
3.2E-5 
3.2E-5 

/ 
/ 
/ 

3.2E-5 
8.8E-6 
1.4E-6 
8.8E-6 
1.4E-6 
4E-8 

3.6E-5 
3.6E-5 

/ 

0.125 
0.2 
0.1 

0.125 
0.2 
0.1 
0.1 
/ 
/ 
/ 

0.1 
0.2 

0.125 
0.2 

0.125 
0.2 
0.1 
0.1 
/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

0.0183 
0.0183 

0.1 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

0.01 
 
3.2. The Occurrence Frequency of the Initiating Events  

 
Firstly, the occurrence probability of initiating events ‘’failure of FIC: ( 0)P FIC ’’ and ‘’failure of PICB: ( 0)P PICB ’’ 
should be determined by minimal cut sets in the BN model. After that, the transformation operator (matrix approach) is used to 
compute the initiating event frequency [36].  
 

We consider:  
( 1)P X : Component X is working.  
( 0)P X : Component X is faulty.  
 

3.2.1. The Occurrence Frequency of the First Scenario 
 

The failure probability of FIC is:  
 
( 0) ( 143 0) ( 143 1). ( 143 0) ( 143 1). ( 143 1). ( 143 0)P FIC P FT P FT P FIC P FT P FIC P FIC V          (7) 

 
The transformation matrix for ‘’failure of FIC’’ is: 

( 0) 0
( ( 0))

( ) ( 0)

( 143 0) 0 ( 143 1) 0
( 143) ( 143 0) ( 143) ( 143 1)

( 143 0) 0 ( 143 1) 0
( 143) ( 143 0) ( 143) ( 143 1)

( 1

P FIC
P FIC

W FIC P FIC

P FT P FT
W FT P FT W FT P FT

P FIC P FT
W FIC P FIC W FT P FT

P FIC 43 1) 0 ( 143 0) 0
( 143) ( 143 1) ( 143 ) ( 143 0)

P FIC V
W FIC P FIC W FIC V P FIC V

                     (8) 

 
( ) ( 143). ( 143 1). ( 143 1) ( 143). ( 143 1). ( 143 1)

( 143 ). ( 143 1). ( 143 1) 4.218 5 / 0.36954 /

W FIC W FT P FIC P FIC V W FIC P FT P FIC V

W FIC V P FT P FIC E h year
             (9) 

 
The occurrence frequency of FIC failure is 0.36954/year. 
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3.2.2. The Occurrence Frequency of the Second Scenario 
 

The failure probability of PICB is:  
 

( 0) ( 130 1). ( 130 1). ( 128 0). ( 128 0)

( 130 0) ( 130 1). ( 130 0)

P PICB P PT P PIC B P LIC AV P LIC AV

P PIC B P PIC B P PT
                  (10) 

 
The transformation matrix for ‘’failure of PICB’’ is: 

 
( 130 1) 0 ( 130 1) 0

( ( 0))
( 130) ( 130 1) ( 130 ) ( 130 1)

( 128 0) 0 ( 128 0) 0
( 128 ) ( 128 0) ( 128 ) ( 128 0)

( 130 0) 0
(

P PT P PIC B
P PICB

W PT P PT W PIC B P PIC B

P LIC AV P LIC BV

W LIC AV P LIC AV W LIC BV P LIC BV

P PIC B

W P

( 130 1) 0 ( 130 0) 0
130 ) ( 130 0) ( 130 ) ( 130 1) ( 130) ( 130 0)

P PIC B P PT

IC B P PIC B W PIC B P PIC B W PT P PT

 (11) 

 
( ) (1 ( 128 0). ( 128 0)).( ( 130). ( 130 1)

( 130 ). ( 130 1)) 1.006 5 / 0.0882 /

W PICB P LIC AV P LIC BV W PT P PIC B

W PIC B P PT E h year
                (12) 

 
The occurrence frequency of PICB failure is 0.0882/year. 

 
4. Results and Discussion 
 
The results of BN analysis to predict the scenario occurrence frequency and its consequences by deductive reasoning are 
shown in Table 5. As can be seen, there are six consequences. The most destructive accidents consequences are a catastrophic 
rupture of D108 with an explosion and pump cavitation with the possibility of a pool fire. The level of severity is chosen by 
expert judgment using an aggregation (choose the max level G between the four targets: personnel, environment, public, and 
production/goods) in the severity ranking criterion. After risk evaluation by the risk matrix in Table 6, the previous risks are in 
the tolerable zone with a low occurrence. The tolerable zone means that the risk is acceptable, but it should be a prevention or 
protection measure in the case of an emergency and follow efficient scheduled maintenance. 
 

To improve the safety, the company set up a semi-automatic water deluge system involving a D108 balloon to avoid 
increasing pressure in the case of a nearby fire as well as P105A/B pumps.     

 
The authors applied sensitivity analysis to improve the safety of the process by BN analysis. 

 
Table 5. Consequences frequencies 

Number Consequences Consequence 
frequency (/year) 

1 Safe situation 0.326 
2 Release gas into the atmosphere  4.3E-2 
3 Catastrophic rupture of D108 with an 

explosion, process shutdown 
1.6E-7 

4 Safe situation 7.8E-2 
5 Stopping pumps with short process stop  1.02E-2 
6 Cavitation pumps with the possibility of 

pool fire, process shutdown 
1.18E-7 

 
Table 6. Risk evaluation 

Consequence  Gravity Probability Risk zone 
Catastrophic rupture of D108 with an explosion, process shutdown G4 P1 (improbable) Tolerable 
Cavitation pumps with the possibility of pool fire, process shutdown G3 P1 (improbable) Tolerable 
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4.1. Sensitivity Analysis 

The posterior probability of each node Xi  is calculated given the failure of the regulatory system (FIC and PICB) in Figures 
8 and 9. The results are shown in Table 7. After updating the frequency of the consequences, the previous consequences or 
risks remained in the tolerable zone. 
 

As can be seen from Figure 10, the results are shown that the probabilities of X4 and X5 represent the largest increase in 
RoV, thus representing the most critical basic events contributing to accidents. In this case, it is necessary to install a parallel 
configuration (e.g. 1002 configuration) at the PT130 transmitter, especially because it is a common critical element that helps 
in the occurrence of both scenarios. 

Table 7. Events and consequences with probabilities updating 
Symbols Description Prior (BN) Posteriors (BN)

Events: 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
 

 
FT143 failed 
FIC143 failed 
FIC143V failed 
PT130 failed 
PIC130B failed 
LIC128AV failed 
LIC128BV failed 

 
1E-5 
4.4E-5 
3.2E-3 
9.6E-6 
4.4E-5 
3.2E-3 
3.2E-3 

 
0.027 
0.118 
0.856 
0.179 
0.819 
0.002 
0.002 

Safety barriers: 
Barrier 1 
Barrier 2 
Barrier 3 (PSV110) 
Barrier 2 
(LZL-128) 
 

 
Alarm-operator failed 
Pressure system controller failed  
Pressure safety valve failed     
Safety instrumented system failed 

 
0.116 
3.74E-4 
0.01 
1.15E-5 

 
0.116 
3.74E-4 
0.01 
1.15E-5 
 

Consequences: 
C1 
C2 
C3 
C4 
C5 
C6 

 
Safe situation  
Release gas into the atmosphere 
Catastrophic rupture of D108 with an explosion 
Safe situation 
Stopping pumps with short process stop 
Cavitation pumps with the possibility of pool 
fire 

 
0.326 
4.3E-2 
1.6E-7 
7.8E-2 
1.02E-2 
1.18E-7 

 
0.8835 
0.1165 
4.35E-07 
0.8835 
0.1165 
1.34E-06 

 

 
Figure 8. Updating probabilities for the BN model for the first scenario 
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Figure 9. Updating probabilities for the BN model for the second scenario 
 

Figure 10. RoV of basic events 
 

5. Conclusion  
 
This paper has presented an application of the Bayesian network to safety risk modeling for the gas refinery subsystem. The 
proposed framework combines the Bayesian network (risk assessment) and risk matrix (residual risk evaluation). This 
approach enables the assessment of the residual risk, which is defined as a combination of occurrence frequency and severity. 
The accident scenario is modeled by the BT diagram in order to identify all possible accident consequences and their causes. 
The BT was mapped to BN to perform both uncertainty handling and probability updating. The mapped BN is able to consider 
conditional dependency among events. A transformation operator is used to compute the occurrence frequency of unwanted 
event failure. This frequency propagates in the BN and assesses the accident consequences as a frequency value and not as a 
probability value. Sensitivity analysis was used for identifying the most critical basic events leading to the accident. The 
results demonstrated that pressure transmitter (PT130) and logic solver (PIC130B) were the most important critical basic 
events because they were common between more than one subsystem. This study considered a complex system as binary 
states. In the future, we plan to apply the approach proposed with the multi-states system and take into account the epistemic 
and aleatory uncertainties in the risk model. 
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